Mean field games

A nice and intuitive introduction to mean field games

What's new

This week at UCLA, Pierre-Louis Lions gave one of this year’s Distinguished Lecture Series, on the topic of mean field games. These are a relatively novel class of systems of partial differential equations, that are used to understand the behaviour of multiple agents each individually trying to optimise their position in space and time, but with their preferences being partly determined by the choices of all the other agents, in the asymptotic limit when the number of agents goes to infinity. A good example here is that of traffic congestion: as a first approximation, each agent wishes to get from A to B in the shortest path possible, but the speed at which one can travel depends on the density of other agents in the area. A more light-hearted example is that of a Mexican wave (or audience wave), which can be modeled by a system of this…

View original post 3,664 more words


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s